If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8a^2+32a-4=0
a = 8; b = 32; c = -4;
Δ = b2-4ac
Δ = 322-4·8·(-4)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-24\sqrt{2}}{2*8}=\frac{-32-24\sqrt{2}}{16} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+24\sqrt{2}}{2*8}=\frac{-32+24\sqrt{2}}{16} $
| (x-7)^2+2=47 | | 1/4y=2/3 | | (x-7)^2=47 | | 7v+20=5(v+2) | | 0=18t-t^2+6 | | 0(x)=x+2 | | 5u+15=2u+36 | | 0=18t-t^+6 | | (x-3)/6=2 | | 25x/3=-25/9 | | 6y-6=24 | | 6x+4=x+29 | | 18x-(8x-9)=39 | | (x+34)(2x+2)=180 | | 7x+3=12×-7 | | (-8)-p=3 | | 4k-5=2k+3 | | 4m+3/2=2m+1/3 | | 43+x=-12 | | 48÷4+k=19 | | 48/4+k=19 | | 7x+6x-12=0 | | 2x+184=5 | | -4x/5=40 | | 6t+2=3t+5 | | -45x=-36 | | 15/12=3/n | | 75.4=2πr | | 9x^2+18x=5 | | x+3=3(2x–4) | | 240x=40 | | 9x-8=118 |